Author:
Sørensen Henning Osholm,Larsen Sine
Abstract
The structural and thermodynamic backgrounds for the crystallization behaviour of racemates have been investigated using 2-phenoxypropionic acid (PPA) as an example. The racemate of PPA behaves normally and forms a racemic compound that has a higher melting point and is denser than the enantiomer. Low-temperature crystal structures of the pure enantiomer, the enantiomer cocrystallized with n-alkanes and the racemic acid showed that hydrogen-bonded dimers that form over crystallographic symmetry elements exist in all but the structure of the pure enantiomer. A database search for optically pure chiral mono-carboxylic acids revealed that the hydrogen-bonded cyclic dimer is the most prevalent hydrogen-bond motif in chiral mono-carboxylic acids. The conformation of PPA depends on the hydrogen-bond motif; the antiplanar conformation relative to the ether group is associated with a catemer hydrogen-bonding motif, whereas the more abundant synplanar conformation is found in crystals that contain cyclic dimers. Other intermolecular interactions that involve the substituent of the carboxylic group were identified in the crystals that contain the cyclic dimer. This result shows how important the nature of the substituent is for the crystal packing. The differences in crystal packing have been related to differences in melting enthalpy and entropy between the racemic and enantiomeric acids. In a comparison with the equivalent 2-(4-chlorophenoxy)-propionic acids, the differences between the crystal structures of the chloro and the unsubstituted acid have been identified and related to thermodynamic data.
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献