Author:
Tarantino Serena C.,Ghigna Paolo,McCammon Catherine,Amantea Roberta,Carpenter Michael A.
Abstract
The MnNb2O6–FeNb2O6 solid solution has been investigated by Fe–K- and Mn–K-edge X-ray absorption (XANES and EXAFS), and Mössbauer spectroscopy. The first-shell M—O bond lengths deduced from EXAFS show a fairly small compositional dependence. A degree of static disorder, which increases with increasing manganese content, is clearly seen by the loss of correlation for the next-neighbour (NN) interaction. Hyperfine parameters from Mössbauer spectra are consistent with variations in the average environment, as recorded by X-ray data. Line broadening of the Mössbauer spectra provides evidence for next-neighbour effects and is consistent with there being no significant clustering of Fe or Mn within the samples. There appear to be differences in the way the columbite structure accommodates Fe2+ and Mn2+ ions. In ferrocolumbite all the Fe octahedra are close to being identical, while there are local structural heterogeneities at a longer length scale, presumably in ordering the precise topology of polyhedra immediately adjacent to the octahedron. By contrast, the manganocolumbite seems to have some diversity in the precise coordination at the MnO6 octahedra, but a greater uniformity in how the adjacent polyhedra are configured around them.
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献