Solvatomorphism of 9,9′-[1,3,4-thiadiazole-2,5-diylbis(2,3-thiophendiyl-4,1-phenylene)]bis[9H-carbazole]: isostructurality, modularity and order–disorder theory

Author:

Stöger Berthold,Kautny Paul,Lumpi Daniel,Zobetz Erich,Fröhlich Johannes

Abstract

During a systematic investigation of the crystallization behaviour of 9,9′-[1,3,4-thiadiazole-2,5-diylbis(2,3-thiophendiyl-4,1-phenylene)]bis[9H-carbazole] (I), six single crystalline solvates were obtained and characterized by X-ray diffraction at 100 K. The structure of the hemi-2-butanone (MEK) solvate contains two crystallographically independent molecules of (I) related by pseudo-inversion symmetry. The structure is polytypic and composed of non-polar (I) layers and polar solvent layers. It can be described according to an extended order–disorder (OD) theory with relaxed vicinity condition. The observed polytype is of a maximum degree of order (MDO). Layer triples of the second MDO polytype are shown by twinning by inversion. The mono-benzene and mono-toluene solvates are isostructural. Whereas the (I) layers are isostructural to those of the idealized description of the hemi-MEK solvate, the solvent layers are non-polar, resulting in a fully ordered structure. The toluene molecule is ordered, the benzene molecule features disorder. The (I) layers in the sesqui-dioxane and sesqui-benzene solvates are isostructural and unrelated to those in the hemi-MEK, mono-benzene and mono-toluene solvates. The solvent layers are isopointal in both sesqui-solvates, but the stacking differs significantly. The hemi-dideuterodichloromethane (DCM-d 2) solvate is made up of two kinds of (I) rods, spaced by DCM-d 2 molecules. Rods of one kind are similar to analogous rods in the sesqui-dioxane and the sesqui-benzene solvates, whereas rods of the other kind are only remotely related to rods in the hemi-MEK solvate.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference33 articles.

1. Recent advances in crystal engineering

2. Allen, F. H., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (2006). International Tables for Crystallography, Vol. C, 1st online ed. Chester: International Union of Crystallography.

3. Polymorphism and Solvatomorphism 2010

4. Bruker (2008). APEXII, SAINT and SADABS. Bruker Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA.

5. Two helical conformations of polythiophene, polypyrrole, and their derivatives

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3