Author:
García-Tuñón Esther,Dacuña Bruno,Zaragoza Guillermo,Franco Jaime,Guitián Francisco
Abstract
We have synthesized large chlorapatite [ClAp, Ca5(PO4)3Cl
x
(OH)1 − x
, where x = 1] single crystals using the molten salt method. We have corroborated that the hexagonal symmetry P63/m describes the crystal structure best, even though the crystals are synthetic and stoichiometric. Moreover, we have performed several thermal treatments on these ClAp crystals, generating new single crystals in the apatite system [Ca5(PO4)3Cl
x
(OH)1 − x
, where x ≤ 1], where the chloride anions (Cl−) were systematically substituted by hydroxyl anions (OH−). These new single crystals were methodically characterized by powder and single-crystal X-ray diffraction (SXRD), scanning electron microscopy (SEM), Fourier transform–IR spectroscopy (FT–IR), and energy-dispersive X-ray spectroscopy (EDS). We have discovered a previously unreported OH− inclusion site substituting the Cl− anion during the ion-exchanging process. Finally, we evaluated the atomic rearrangements of the other species involved in the structure. These movements are associated with ionic exchange, which can be justified from an energetic point of view. We also found a novel phase transformation at high temperature. When the crystals are heated over 1753 K the apatite system evolves to a less ordered monoclinic structure, in which the complete loss of the species in the anionic channel (Cl−, OH−) has been confirmed.
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献