The minimum crystal size needed for a complete diffraction data set

Author:

Holton James M.,Frankel Kenneth A.

Abstract

In this work, classic intensity formulae were united with an empirical spot-fading model in order to calculate the diameter of a spherical crystal that will scatter the required number of photons per spot at a desired resolution over the radiation-damage-limited lifetime. The influences of molecular weight, solvent content, WilsonBfactor, X-ray wavelength and attenuation on scattering power and dose were all included. Taking the net photon count in a spot as the only source of noise, a complete data set with a signal-to-noise ratio of 2 at 2 Å resolution was predicted to be attainable from a perfect lysozyme crystal sphere 1.2 µm in diameter and two different models of photoelectron escape reduced this to 0.5 or 0.34 µm. These represent 15-fold to 700-fold less scattering power than the smallest experimentally determined crystal size to date, but the gap was shown to be consistent with the background scattering level of the relevant experiment. These results suggest that reduction of background photons and diffraction spot size on the detector are the principal paths to improving crystallographic data quality beyond current limits.

Publisher

International Union of Crystallography (IUCr)

Subject

General Medicine,Structural Biology

Cited by 156 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep residual networks for crystallography trained on synthetic data;Acta Crystallographica Section D Structural Biology;2024-01-01

2. 3D tomographic phase retrieval and unwrapping;Inverse Problems;2023-12-14

3. Time-resolved Crystallography on Protein Photoreceptors and Enzymes;Integrated Structural Biology;2023-12-08

4. Electron counting with direct electron detectors in MicroED;Structure;2023-12

5. The Sample;Dynamics and Kinetics in Structural Biology;2023-10-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3