Determination of hydrogen ordering within the β-RH2+xphase (R= Ho, Y) using electron diffraction techniques

Author:

Grier Elizabeth J.,Petford-Long Amanda K.,Ward Roger C. C.

Abstract

Computer simulations of the electron diffraction patterns along the [\bar{1}10] zone axes of four ordered structures within the β-RH2+xphase, withR= Ho or Y, and 0 ≤x≤ 0.25, have been performed to establish whether or not the hydrogen ordering could be detected using electron diffraction techniques. Ordered structures within otherRH2+x(R= Ce, Tb) systems have been characterized with neutron scattering experiments; however, for HoH(D)2+x, neutron scattering failed to characterize the superstructure, possibly because of the lowxconcentration or lack of long-range order within the crystal. This paper aims to show that electron diffraction could overcome both of these problems. The structures considered were the stoichiometric face-centred cubic (f.c.c.) fluorite structure (x= 0), theD1 structure (x= 0.125), theD1astructure (x= 0.2) and theD022structure (x= 0.25). In the stoichiometric structure, with all hydrogen atoms located on the tetrahedral (t) sites, only the diffraction pattern from the f.c.c. metal lattice was seen; however, for the superstoichiometric structures, with the excess hydrogen atoms ordered on the octahedral (o) sites, extra reflections were visible. All the superstoichiometric structures showed extra reflections at the (001)f.c.c.and (110)f.c.c.type positions, with structureD1 also showing extra peaks at (½ ½ ½)f.c.c.. These reflections are not seen in the simulations at similar hydrogen concentrations with the hydrogen atoms randomly occupying theovacancies.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3