Author:
Grier Elizabeth J.,Petford-Long Amanda K.,Ward Roger C. C.
Abstract
Computer simulations of the electron diffraction patterns along the [\bar{1}10] zone axes of four ordered structures within the β-RH2+xphase, withR= Ho or Y, and 0 ≤x≤ 0.25, have been performed to establish whether or not the hydrogen ordering could be detected using electron diffraction techniques. Ordered structures within otherRH2+x(R= Ce, Tb) systems have been characterized with neutron scattering experiments; however, for HoH(D)2+x, neutron scattering failed to characterize the superstructure, possibly because of the lowxconcentration or lack of long-range order within the crystal. This paper aims to show that electron diffraction could overcome both of these problems. The structures considered were the stoichiometric face-centred cubic (f.c.c.) fluorite structure (x= 0), theD1 structure (x= 0.125), theD1astructure (x= 0.2) and theD022structure (x= 0.25). In the stoichiometric structure, with all hydrogen atoms located on the tetrahedral (t) sites, only the diffraction pattern from the f.c.c. metal lattice was seen; however, for the superstoichiometric structures, with the excess hydrogen atoms ordered on the octahedral (o) sites, extra reflections were visible. All the superstoichiometric structures showed extra reflections at the (001)f.c.c.and (110)f.c.c.type positions, with structureD1 also showing extra peaks at (½ ½ ½)f.c.c.. These reflections are not seen in the simulations at similar hydrogen concentrations with the hydrogen atoms randomly occupying theovacancies.
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献