Coordination of a triazine ligand with CuII and AgI investigated by spectral, structural, theoretical and docking studies

Author:

Marandi Farzin,Moeini Keyvan,Krautscheid Harald

Abstract

Two complexes of 5-phenyl-3-(pyridin-2-yl)-1,2,4-triazine (PPTA), namely (ethanol-κO)bis(nitrato-κO)[5-phenyl-3-(pyridin-2-yl-κN)-1,2,4-triazine-κN 2]copper(II), [Cu(NO3)2(C14H10N4)(C2H6O)] or [Cu(NO3)2(PPTA)(EtOH)] (1), and bis[μ-5-phenyl-3-(pyridin-2-yl)-1,2,4-triazine]-κ3 N 1:N 2,N 33 N 2,N 3:N 1-bis[(nitrato-κO)silver(I)], [Ag2(NO3)2(C14H10N4)2] or [Ag2(NO3)2(μ-PPTA)2] (2), were prepared and characterized by elemental analysis, FT–IR spectroscopy and single-crystal X-ray diffraction. The X-ray structure analysis of 1 revealed a copper complex with square-pyramdial geometry containing two O-donor nitrate ligands along with an N,N′-donor PPTA ligand and one O-donor ethanol ligand. In the binuclear structure of 2, formed by the bridging of two PPTA ligands, each Ag atom has an AgN3O environment and square-planar geometry. In addition to the four dative interactions, each Ag atom interacts with two O atoms of two nitrate ligands on adjacent complexes to complete a pseudo-octahedral geometry. Density functional theory (DFT) calculations revealed that the geometry around the Cu and Ag atoms in 1 opt and 2 opt (opt is optimized) for an isolated molecule is the same as the experimental results. In 1, O—H...O hydrogen bonds form R 1 2(4) motifs. In the crystal network of the complexes, in addition to the hydrogen bonds, there are π–π stacking interactions between the aromatic rings (phenyl, pyridine and triazine) of the ligands on adjacent complexes. The ability of the ligand and complexes 1 and 2 to interact with ten selected biomacromolecules (BRAF kinase, CatB, DNA gyrase, HDAC7, rHA, RNR, TrxR, TS, Top II and B-DNA) was investigated by docking studies. The results show that the studied compounds can interact with proteins better than doxorubicin (except for TrxR and Top II).

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3