A new linear phenyloxazole–benzothiadiazole luminophore: crystal growth, structure and fluorescence properties

Author:

Postnikov Valery A.ORCID,Sorokina Natalia I.ORCID,Kulishov Artem A.ORCID,Lyasnikova Maria S.ORCID,Sorokin Timofei A.,Freidzon Alexandra Ya.ORCID,Stepko Anastasia S.ORCID,Borshchev Oleg V.ORCID,Skorotetsky Maxim S.,Surin Nikolay M.ORCID,Svidchenko Evgeniya A.ORCID,Ponomarenko Sergey A.ORCID

Abstract

A new linear luminophore consisting of five conjugated units of oxazole, phenylene and a central benzothiadiazole fragment, 4,7-bis[4-(1,3-oxazol-5-yl)phenyl]-2,1,3-benzothiadiazole, has been synthesized and characterized. Needle-like single-crystal samples up to 10 mm in length were obtained by physical vapor transport. The crystal structure was determined at 95 K and 293 K using single-crystal X-ray diffraction. With decreasing temperature, the space group P21/n does not change, but the unit-cell volume of the crystal decreases. The presence of intra- and intermolecular hydrogen bonds was established. Melting parameters (T m = 305.5°C, ΔH m = 52.2 kJ mol−1) and the presence of a liquid-crystalline mesophase (T LC = 336.3°C, ΔH LC = 1.4 kJ mol−1) were determined by differential scanning calorimetry and in situ thermal polarization optical microscopy studies. The presence of linear chains of hydrogen bonds ensures high stability of the crystal structure in a wide temperature range. The luminophore is characterized by a large Stokes shift (5120–5670 cm−1) and a high quantum yield of fluorescence, reaching 96% in solutions (λmax = 517 nm) and 27% in thin crystalline films (λmax = 529 nm). The calculated absorption and emission spectra are in good agreement with the experimental data. Because of the excellent optical properties and high thermal stability, the new linear luminophore has great potential for application in organic photonics and optoelectronic devices.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3