Abstract
Macromolecular crystallography (MX) has been a motor for biology for over half a century and this continues apace. A series of revolutions, including the production of recombinant proteins and cryo-crystallography, have meant that MX has repeatedly reinvented itself to dramatically increase its reach. Over the last 30 years synchrotron radiation has nucleated a succession of advances, ranging from detectors to optics and automation. These advances, in turn, open up opportunities. For instance, a further order of magnitude could perhaps be gained in signal to noise for general synchrotron experiments. In addition, X-ray free-electron lasers offer to capture fragments of reciprocal space without radiation damage, and open up the subpicosecond regime of protein dynamics and activity. But electrons have recently stolen the limelight: so is X-ray crystallography in rude health, or will imaging methods, especially single-particle electron microscopy, render it obsolete for the most interesting biology, whilst electron diffraction enables structure determination from even the smallest crystals? We will lay out some information to help you decide.
Publisher
International Union of Crystallography (IUCr)
Reference113 articles.
1. Abbamonte, P. et al. (2015). SLAC Report SLAC-R-1053. Menlo Park: SLAC National Accelerator Laboratory. https://portal.slac.stanford.edu/sites/lcls_public/Documents/LCLS-IIScienceOpportunities_final.pdf.
2. Allan, R. J., Nave, C., Keegan, R., Meredith, D. J., Winn, M. D., Winter, G., Dolomanov, O., Launer, L., Young, P. & Berry, I. (2005). Proceedings of the UK e-Science All Hands Meeting 2005. http://www.allhands.org.uk/2005/proceedings/papers/385.pdf.
3. Structural biology at the European X-ray free-electron laser facility
4. Long-wavelength macromolecular crystallography – First successful native SAD experiment close to the sulfur edge
5. In situmacromolecular crystallography using microbeams
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献