Abstract
MalE is a maltose/maltodextrin-binding protein (MBP) that plays a critical role in most bacterial maltose/maltodextrin-transport systems. Previously reported wild-type MBPs are monomers comprising an N-terminal domain (NTD) and a C-terminal domain (CTD), and maltose-like molecules are recognized between the NTD and CTD and transported to the cell system. Because MBP does not undergo artificial dimerization, it is widely used as a tag for protein expression and purification. Here, the crystal structure of a domain-swapped dimeric MalE from Salmonella enterica (named SeMalE) in complex with maltopentaose is reported for the first time, and its structure is distinct from typical monomeric MalE family members. In the domain-swapped dimer, SeMalE comprises two subdomains: the NTD and CTD. The NTD and CTD of one molecule of SeMalE interact with the CTD and NTD of the partner molecule, respectively. The domain-swapped dimeric conformation was stabilized by interactions between the NTDs, CTDs and linkers from two SeMalE molecules. Additionally, a maltopentaose molecule was found to be located at the interface between the NTD and CTD of different SeMalE molecules. These results provide new insights that will improve the understanding of maltodextrin-binding MalE proteins.
Funder
Natural Science Foundation of Liaoning Province
Key Laboratory of Marine Bioactive Substance and Modern Analysis Technology
Program for Liaoning Innovative Talents in University
Dalian High-Level Talent Innovation Program
Central Universities in China
National Research Foundation of Korea
Publisher
International Union of Crystallography (IUCr)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献