Overall protein structure quality assessment using hydrogen-bonding parameters

Author:

Afonine Pavel V.ORCID,Sobolev Oleg V.ORCID,Moriarty Nigel W.ORCID,Terwilliger Thomas C.ORCID,Adams Paul D.ORCID

Abstract

Atomic model refinement at low resolution is often a challenging task. This is mostly because the experimental data are not sufficiently detailed to be described by atomic models. To make refinement practical and ensure that a refined atomic model is geometrically meaningful, additional information needs to be used such as restraints on Ramachandran plot distributions or residue side-chain rotameric states. However, using Ramachandran plots or rotameric states as refinement targets diminishes the validating power of these tools. Therefore, finding additional model-validation criteria that are not used or are difficult to use as refinement goals is desirable. Hydrogen bonds are one of the important noncovalent interactions that shape and maintain protein structure. These interactions can be characterized by a specific geometry of hydrogen donor and acceptor atoms. Systematic analysis of these geometries performed for quality-filtered high-resolution models of proteins from the Protein Data Bank shows that they have a distinct and a conserved distribution. Here, it is demonstrated how this information can be used for atomic model validation.

Funder

National Institutes of Health

U.S. Department of Energy

Publisher

International Union of Crystallography (IUCr)

Subject

Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3