Effects of protein-crystal hydration and temperature on side-chain conformational heterogeneity in monoclinic lysozyme crystals

Author:

Atakisi Hakan,Moreau David W.,Thorne Robert E.

Abstract

The modulation of main-chain and side-chain conformational heterogeneity and solvent structure in monoclinic lysozyme crystals by dehydration (related to water activity) and temperature is examined. Decreasing the relative humidity (from 99 to 11%) and decreasing the temperature both lead to contraction of the unit cell, to an increased area of crystal contacts and to remodeling of primarily contact and solvent-exposed residues. Both lead to the depopulation of some minor side-chain conformers and to the generation of new conformations. Side-chain modifications and main-chain r.m.s.d.s associated with cooling from 298 to 100 K depend on relative humidity and are minimized at 85% relative humidity (r.h.). Dehydration from 99 to 93% r.h. and cooling from 298 to 100 K result in a comparable number of remodeled residues, with dehydration-induced remodeling somewhat more likely to arise from contact interactions. When scaled to equivalent temperatures based on unit-cell contraction, the evolution of side-chain order parameters with dehydration shows generally similar features to those observed on cooling toT= 100 K. These results illuminate the qualitative and quantitative similarities between structural perturbations induced by modest dehydration, which routinely occurs in samples prepared for 298 and 100 K data collection, and cryocooling. Differences between these perturbations in terms of energy landscapes and occupancies, and implications for variable-temperature crystallography between 180 and 298 K, are discussed. It is also noted that remodeling of a key lysozyme active-site residue by dehydration, which is associated with a radical decrease in the enzymatic activity of lysozyme powder, arises due to a steric clash with the residue of a symmetry mate.

Funder

National Science Foundation, Division of Molecular and Cellular Biosciences

National Institutes of Health, National Institute of General Medical Sciences

Publisher

International Union of Crystallography (IUCr)

Subject

Structural Biology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3