Insight into the potential factors influencing the catalytic direction in cellobiose 2-epimerase by crystallization and mutagenesis

Author:

Feng Yinghui,Hua Xiao,Shen Qiuyun,Matthews Melissa,Zhang Yuzhu,Fisher Andrew J.ORCID,Lyu Xiaomei,Yang Ruijin

Abstract

Cellobiose 2-epimerase (CE) is commonly recognized as an epimerase as most CEs mainly exhibit an epimerization activity towards disaccharides. In recent years, several CEs have been found to possess bifunctional epimerization and isomerization activities. They can convert lactose into lactulose, a high-value disaccharide that is widely used in the food and pharmaceutical industries. However, the factors that determine the catalytic direction in CEs are still not clear. In this study, the crystal structures of three newly discovered CEs, CsCE (a bifunctional CE from Caldicellulosiruptor saccharolyticus), StCE (a bifunctional CE from Spirochaeta thermophila DSM 6578) and BtCE (a monofunctional CE from Bacillus thermoamylovorans B4166), were determined at 1.54, 2.05 and 1.80 Å resolution, respectively, in order to search for structural clues to their monofunctional/bifunctional properties. A comparative analysis of the hydrogen-bond networks in the active pockets of diverse CEs, YihS and mannose isomerase suggested that the histidine corresponding to His188 in CsCE is uniquely required to catalyse isomerization. By alignment of the apo and ligand-bound structures of diverse CEs, it was found that bifunctional CEs tend to have more flexible loops and a larger entrance around the active site, and that the flexible loop 148–181 in CsCE displays obvious conformational changes during ligand binding. It was speculated that the reconstructed molecular interactions of the flexible loop during ligand binding helped to motivate the ligands to stretch in a manner beneficial for isomerization. Further site-directed mutagenesis analysis of the flexible loop in CsCE indicated that the residue composition of the flexible loop did not greatly impact epimerization but affects isomerization. In particular, V177D and I178D mutants showed a 50% and 80% increase in isomerization activity over the wild type. This study provides new information about the structural characteristics involved in the catalytic properties of CEs, which can be used to guide future molecular modifications.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

Publisher

International Union of Crystallography (IUCr)

Subject

Structural Biology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3