Structural insights into the substrate specificity and activity of a novel mannose 2-epimerase from Runella slithyformis

Author:

Wang HangORCID,Sun Xiaomei,Saburi WataruORCID,Hashiguchi Saki,Yu Jian,Ose Toyoyuki,Mori Haruhide,Yao MinORCID

Abstract

Mannose 2-epimerase (ME), a member of the acylglucosamine 2-epimerase (AGE) superfamily that catalyzes epimerization of D-mannose and D-glucose, has recently been characterized to have potential for D-mannose production. However, the substrate-recognition and catalytic mechanism of ME remains unknown. In this study, structures of Runella slithyformis ME (RsME) and its D254A mutant [RsME(D254A)] were determined in their apo forms and as intermediate-analog complexes [RsME–D-glucitol and RsME(D254A)–D-glucitol]. RsME possesses the (α/α)6-barrel of the AGE superfamily members but has a unique pocket-covering long loop (loopα7–α8). The RsME–D-glucitol structure showed that loopα7–α8 moves towards D-glucitol and closes the active pocket. Trp251 and Asp254 in loopα7–α8 are only conserved in MEs and interact with D-glucitol. Kinetic analyses of the mutants confirmed the importance of these residues for RsME activity. Moreover, the structures of RsME(D254A) and RsME(D254A)–D-glucitol revealed that Asp254 is vital for binding the ligand in a correct conformation and for active-pocket closure. Docking calculations and structural comparison with other 2-epimerases show that the longer loopα7–α8 in RsME causes steric hindrance upon binding to disaccharides. A detailed substrate-recognition and catalytic mechanism for monosaccharide-specific epimerization in RsME has been proposed.

Funder

Japan Society for the Promotion of Science

Japan Agency for Medical Research and Development

Publisher

International Union of Crystallography (IUCr)

Subject

Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3