Identification of a novel polyfluorinated compound as a lead to inhibit the human enzymes aldose reductase and AKR1B10: structure determination of both ternary complexes and implications for drug design

Author:

Cousido-Siah Alexandra,Ruiz Francesc X.,Mitschler André,Porté Sergio,de Lera Ángel R.,Martín María J.,Manzanaro Sonia,de la Fuente Jesús A.,Terwesten Felix,Betz Michael,Klebe Gerhard,Farrés Jaume,Parés Xavier,Podjarny Alberto

Abstract

Aldo-keto reductases (AKRs) are mostly monomeric enzymes which fold into a highly conserved (α/β)8barrel, while their substrate specificity and inhibitor selectivity are determined by interaction with residues located in three highly variable external loops. The closely related human enzymes aldose reductase (AR or AKR1B1) and AKR1B10 are of biomedical interest because of their involvement in secondary diabetic complications (AR) and in cancer,e.g.hepatocellular carcinoma and smoking-related lung cancer (AKR1B10). After characterization of the IC50values of both AKRs with a series of polyhalogenated compounds, 2,2′,3,3′,5,5′,6,6′-octafluoro-4,4′-biphenyldiol (JF0064) was identified as a lead inhibitor of both enzymes with a new scaffold (a 1,1′-biphenyl-4,4′-diol). An ultrahigh-resolution X-ray structure of the AR–NADP+–JF0064 complex has been determined at 0.85 Å resolution, allowing it to be observed that JF0064 interacts with the catalytic residue Tyr48 through a negatively charged hydroxyl group (i.e.the acidic phenol). The non-competitive inhibition pattern observed for JF0064 with both enzymes suggests that this acidic hydroxyl group is also present in the case of AKR1B10. Moreover, the combination of surface lysine methylation and the introduction of K125R and V301L mutations enabled the determination of the X-ray crystallographic structure of the corresponding AKR1B10–NADP+–JF0064 complex. Comparison of the two structures has unveiled some important hints for subsequent structure-based drug-design efforts.

Publisher

International Union of Crystallography (IUCr)

Subject

General Medicine,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3