Investigation of the milling characteristics of different focused-ion-beam sources assessed by three-dimensional electron diffraction from crystal lamellae

Author:

Parkhurst James M.,Crawshaw Adam D.ORCID,Siebert C. Alistair,Dumoux Maud,Owen C. David,Nunes Pedro,Waterman DavidORCID,Glen Thomas,Stuart David I.ORCID,Naismith James H.ORCID,Evans GwyndafORCID

Abstract

Three-dimensional electron diffraction (3DED) from nanocrystals of biological macromolecules requires the use of very small crystals. These are typically less than 300 nm-thick in the direction of the electron beam due to the strong interaction between electrons and matter. In recent years, focused-ion-beam (FIB) milling has been used in the preparation of thin samples for 3DED. These instruments typically use a gallium liquid metal ion source. Inductively coupled plasma (ICP) sources in principle offer faster milling rates. Little work has been done to quantify the damage these sources cause to delicate biological samples at cryogenic temperatures. Here, an analysis of the effect that milling with plasma FIB (pFIB) instrumentation has on lysozyme crystals is presented. This work evaluates both argon and xenon plasmas and compares them with crystals milled with a gallium source. A milling protocol was employed that utilizes an overtilt to produce wedge-shaped lamellae with a shallow thickness gradient which yielded very thin crystalline samples. 3DED data were then acquired and standard data-processing statistics were employed to assess the quality of the diffraction data. An upper bound to the depth of the pFIB-milling damage layer of between 42.5 and 50 nm is reported, corresponding to half the thickness of the thinnest lamellae that resulted in usable diffraction data. A lower bound of between 32.5 and 40 nm is also reported, based on a literature survey of the minimum amount of diffracting material required for 3DED.

Funder

Wellcome Trust

Publisher

International Union of Crystallography (IUCr)

Subject

Condensed Matter Physics,General Materials Science,Biochemistry,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3