Spin-density studies of the multiferroic metal-organic compound [NH2(CH3)2][FeIIIFeII(HCOO)6]

Author:

Cañadillas-Delgado Laura,Fabelo OscarORCID,Rodríguez-Velamazán J. Alberto,Stunault Anne,Zhao Jiong-PengORCID,Bu Xian-He,Rodríguez-Carvajal JuanORCID

Abstract

Polarized neutron diffraction is used to study in depth the magnetic properties of the heterometallic compound [NH2(CH3)2][FeIIIFeII(HCOO)6] and give insight into its magnetic behaviour, addressing open questions that will contribute to a better understanding of this attention-grabbing material and other related ones. Previous results revealed that upon cooling, the magnetic moments of the FeII and FeIII sites do not order simultaneously: the magnetization of the FeII site increases faster than that of the FeIII sites. Unpolarized neutron diffraction measurements at 2 K with no external field revealed some discrepancies in the saturation value of the magnetic signal on the FeIII sites and in the ferromagnetic moment along the c axis. These discrepancies could be related to the actual distribution of magnetic moment, since unpolarized neutron diffraction gives information on the magnetic moment localized only on the magnetic ions. Polarized neutron diffraction allows an analysis of the magnitude of the spin density over magnetic and non-magnetic ions (the organic ligand and the counterion), which can give a clue to explain the low saturation on the FeIII sites and the correlation with the physical measurements. The present study also contributes to the understanding of the magneto-electric behaviour of this compound, giving insight into the role of metal disorder in the origin of the structural phase transition, which is responsible for its antiferrolelectric order, and into the influence of spin-density delocalization on its magneto-electric properties, allowing a discussion of the alternative explanations given so far for its electric properties at low temperature.

Funder

Ministerio de Ciencia, Innovación y Universidades

European Commission

Publisher

International Union of Crystallography (IUCr)

Subject

Condensed Matter Physics,General Materials Science,Biochemistry,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3