Abstract
Neutrons are valuable probes for various material samples across many areas of research. Neutron imaging typically has a spatial resolution of larger than 20 µm, whereas neutron scattering is sensitive to smaller features but does not provide a real-space image of the sample. A computed-tomography technique is demonstrated that uses neutron-scattering data to generate an image of a periodic sample with a spatial resolution of ∼300 nm. The achieved resolution is over an order of magnitude smaller than the resolution of other forms of neutron tomography. This method consists of measuring neutron diffraction using a double-crystal diffractometer as a function of sample rotation and then using a phase-retrieval algorithm followed by tomographic reconstruction to generate a map of the sample's scattering-length density. Topological features found in the reconstructions are confirmed with scanning electron micrographs. This technique should be applicable to any sample that generates clear neutron-diffraction patterns, including nanofabricated samples, biological membranes and magnetic materials, such as skyrmion lattices.
Funder
National Institute of Standards and Technology
U.S. Department of Energy
Canada First Research Excellence Fund
Natural Sciences and Engineering Research Council of Canada
Canada Excellence Research Chairs, Government of Canada
Publisher
International Union of Crystallography (IUCr)
Subject
Condensed Matter Physics,General Materials Science,Biochemistry,General Chemistry
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献