Structures of the PKC-ι kinase domain in its ATP-bound and apo forms reveal defined structures of residues 533–551 in the C-terminal tail and their roles in ATP binding

Author:

Takimura Tetsuo,Kamata Kenji,Fukasawa Kazuhiro,Ohsawa Hirokazu,Komatani Hideya,Yoshizumi Takashi,Takahashi Ikuko,Kotani Hidehito,Iwasawa Yoshikazu

Abstract

Protein kinase C (PKC) plays an essential role in a wide range of cellular functions. Although crystal structures of the PKC-θ, PKC-ι and PKC-βII kinase domains have previously been determined in complexes with small-molecule inhibitors, no structure of a PKC–substrate complex has been determined. In the previously determined PKC-ι complex, residues 533–551 in the C-terminal tail were disordered. In the present study, crystal structures of the PKC-ι kinase domain in its ATP-bound and apo forms were determined at 2.1 and 2.0 Å resolution, respectively. In the ATP complex, the electron density of all of the C-terminal tail residues was well defined. In the structure, the side chain of Phe543 protrudes into the ATP-binding pocket to make van der Waals interactions with the adenine moiety of ATP; this is also observed in other AGC kinase structures such as binary and ternary substrate complexes of PKA and AKT. In addition to this interaction, the newly defined residues around the turn motif make multiple hydrogen bonds to glycine-rich-loop residues. These interactions reduce the flexibility of the glycine-rich loop, which is organized for ATP binding, and the resulting structure promotes an ATP conformation that is suitable for the subsequent phosphoryl transfer. In the case of the apo form, the structure and interaction mode of the C-terminal tail of PKC-ι are essentially identical to those of the ATP complex. These results indicate that the protein structure is pre-organized before substrate binding to PKC-ι, which is different from the case of the prototypical AGC-branch kinase PKA.

Publisher

International Union of Crystallography (IUCr)

Subject

General Medicine,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3