Influence of neglected small-angle scattering in radial distribution function analysis

Author:

Cargill G. S.

Abstract

Materials containing inhomogeneities (density-fluctuations) of much greater than atomic size produce scattering at very small angles, which may go unobserved in many X-ray, electron, and neutron scattering experiments. For liquids and for amorphous and polycrystalline solids composed of one atomic species, an approximate expression for the reduced radial distribution function obtained from intensity measurements which neglect the small-angle scattering is shown to be Gexp(r) = 4πr{ρ(r) − ρ0[1 + (\overline {\eta^2}η2(ω)/ρ0 2)γ(ω, r)]} where ρ(r) is the atomic distribution function, ρ0 is the average atomic density, \overline {\eta^2}(ω) is the average square of atomic density fluctuations, γ(ω,r) is the density fluctuation correlation function, and ω is a volume element larger than the average atomic volume but smaller than the scale of long-range density fluctuations. This expression is also valid for systems composed of more than one type of atom where ρ(r) is a weighted average of pair distribution functions and [\overline {\eta^2}(ω)/ρ0 2]γ(ω,r) for X-ray scattering describes electron density fluctuations The neglect of small-angle scattering gives rise to a G exp(r) which appears, from its slope at small r, to correspond to a material of greater average atomic density ρ0,exp than that of the sample being studied. These results are illustrated by application to fluid argon (ρ0,exp0 = 1.17 near the critical point), to amorphous silicon (ρ0,exp0 = 1.13), and to phase separated PbO–B2O3 glasses (ρ0,exp0 = 1.07 for 24 wt. % PbO).

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3