Abstract
A model is proposed for calculating the Rayleigh-wave velocity as obtained by an acoustic lens, taking into account the anisotropy of the material under study and the profile of the miniature acoustic probe. The results obtained by this model on different `cuts' of single-crystal silicon agree with both those published in the literature and our own experimental results. In addition, the model has been applied to the non-destructive thickness measurement of opaque thin films deposited on different anisotropic substrates. More significantly, using the model and experimental acoustic material signature (AMS) curves obtained with this acoustic measurement system, the thickness of tungsten thin films deposited on silicon (100) have been measured. The results are in good agreement with measurements made using a Rutherford back-scattering technique.
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献