Characterization of the pore structure of metakaolin-derived geopolymers by neutron scattering and electron microscopy

Author:

Maitland C. F.,Buckley C. E.,O'Connor B. H.,Butler P. D.,Hart R. D.

Abstract

The pore–solid structure of selected high-compressive-strength metakaolin geopolymers has been characterized to facilitate quantitative prediction of their physical properties. Geopolymers are multiphase materials with pore widths ranging from subnanometre to several tenths of a millimetre. Ultramicrotoming of resin-embedded grains was found to be an effective method for producing electron-transparent sections. Scanning and transmission electron microscopy showed the existence of a bi-level pore system and heterogeneity of the pore morphology. Ultra-small-angle neutron scattering, of sufficiently thin specimens, was found to be useful in detecting the length scales on which statistically significant structural changes occur as the geopolymer chemical composition is varied. Contrast variation experiments confirmed that the small-angle neutron scattering from an Si:Al:Na = 2.5:1:1.2 geopolymer before and after dehydration was dominated by scattering from pores. These experiments suggested the presence of closed (under current experimental conditions) pores in the dehydrated geopolymer. A three-phase analysis was developed for this system, and the scattering of the solid, open pore and closed pore phases was determined as a function of scattering length density ρ. The scattering from all three phases had the sameqdependence over the range of likely ρ within the uncertainties. A lower limit of 4.21 (6) × 1010 cm−2was determined for the scattering length density ρwof the nondehydrated geopolymer by assuming the pore fluid to be water. This scattering length density is significantly higher than the expected value of approximately 3.4 × 1010 cm−2. Small-angle neutron scattering from the dehydrated and nondehydrated Si:Al:Na = 2.5:1:1.2 geopolymer showed that dehydration does not cause a severe change in morphology of the nanoporosity on the length scale probed.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Reference38 articles.

1. Design and performance of a thermal-neutron double-crystal diffractometer for USANS at NIST

2. Bell, J. L. (2007). Personal communication.

3. Nanoporosity in Aluminosilicate, Geopolymeric Cements

4. Buckley, C. E., O' Connor, B. & Rowles, M. (2002). AINSE Progress Report for 02/014. Australian Institute of Nuclear Science and Engineering, Lucas Heights, NSW, Australia.

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3