Abstract
The chemical reaction of 4-bromobenzoylchloride and 2-aminothiazole in the presence of potassium thiocyanate yielded a white solid formulated as C15H10BrN3OS2, which consists of 4-bromobenzamido and 2-benzothiazolyl moieties connected by a thiourea group. The 4-bromobenzamido and 2-benzothiazolyl moieties are in a trans conformtion (sometimes also called s-trans due to the single bond) with respect to the N—C bond. The dihedral angle between the mean planes of the 4-bromophenyl and the 2-benzothiazolyl units is 10.45 (11)°. The thiourea moiety, —C—NH—C(=S) —NH— fragment forms a dihedral angle of 8.64 (12)° with the 4-bromophenyl ring and is almost coplanar with the 2-benzothiazolyl moiety, with a dihedral angle of 1.94 (11)°. The molecular structure is stabilized by intramolecular N—H...O hydrogen bonds, resulting in the formation of an S(6) ring. In the crystal, pairs of adjacent molecules interact via intermolecular hydrogen bonds of type C—H...N, C—H...S and N—H...S, resulting in molecular layers parallel to the ac plane.
Publisher
International Union of Crystallography (IUCr)