Synthesis, crystal structure determination of a novel phosphate Ag1.64Zn1.64Fe1.36(PO4)3 with an alluaudite-like structure

Author:

Khmiyas Jamal,Assani Abderrazzak,Saadi MohamedORCID,El Ammari Lahcen

Abstract

Single crystals of Ag1.64Zn1.64Fe1.36(PO4)3 [silver zinc iron phosphate (1.64/1.64/1.36/3)] have been synthesized by a conventional solid-state reaction and structurally characterized by single-crystal X-ray diffraction. The title compound crystallizes with an alluaudite-like structure. All atoms of the structure are in general positions except for four, which reside on special positions of the space group, C2/c. The Ag+ cations reside at full occupancy on inversion centre sites and at partial occupancy (64%) on a twofold rotation axis. In this structure, the unique Fe3+ ion with one of the two Zn2+ cations are substitutionally disordered on the same general position (Wyckoff site 8f), with a respective ratio of 0.68/0.32 (occupancies were fixed so as to ensure electrical neutrality for the whole structure). The remaining O and P atoms are located in general positions. The three-dimensional framework of this structure consists of kinked chains of edge-sharing octahedra stacked parallel to [10\overline{1}]. These chains are built up by a succession of [MO6] (M = Zn/Fe or Zn) units. Adjacent chains are connected by the PO4 anions, forming sheets oriented perpendicular to [010]. These interconnected sheets generate two types of channels parallel to the c axis, in which the Ag+ cations are located. The validity and adequacy of the proposed structural model of Ag1.64Zn1.64Fe1.36(PO4)3 was established by means of bond-valence-sum (BVS) and charge-distribution (CHARDI) analysis tools.

Publisher

International Union of Crystallography (IUCr)

Subject

Condensed Matter Physics,General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3