Averaging the intensity of many-layered structures for accurate stacking-fault analysis using Rietveld refinement

Author:

Coelho Alan A.,Evans John S. O.,Lewis James W.

Abstract

Many technologically important synthetic and natural materials display stacking faults which lead to complex peak broadenings, asymmetries and shifts in their powder diffraction patterns. The patterns can be described using an enlarged unit cell (called a supercell) containing an explicit description of the layers. Since the supercell can contain hundreds of thousands of atoms with hundreds of thousands of hkl reflections, a Rietveld approach has been too computationally demanding for all but the simplest systems. This article describes the implementation of the speed-ups necessary to allow Rietveld refinement in the computer program TOPAS Version 6 (Bruker AXS, Karlsruhe, Germany). Techniques implemented include: a peaks buffer that allows hundreds of thousands of hkl-dependent peak shapes to be automatically approximated by a few hundred peaks; an averaging process for hundreds of large supercells with minimum impact on computational time; a smoothing technique that allows for the use of small supercells which approximate supercells ten to 20 times larger; and efficient algorithms for stacking sequence generation. The result is Rietveld refinement of supercells operating at speeds several thousand times faster than traditional Rietveld refinements. This allows quantitative and simultaneous analysis of structure and microstructure in complex stacking-faulted samples.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Reference12 articles.

1. 3D Transition Metal Ordering and Rietveld Stacking Fault Quantification in the New Oxychalcogenides La2O2Cu2–4xCd2xSe2

2. Structure solution and refinement of stacking-faulted NiCl(OH)

3. Bruker (2009). DIFFRACplus TOPAS4.2. Technical Reference Manual. Bruker AXS, Karlsruhe, Germany.

4. Bruker (2015). TOPAS. Version 6.0. Bruker AXS, Karlsruhe, Germany.

5. A fundamental parameters approach to X-ray line-profile fitting

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3