Effects of Crystal Packing on Photoinduced Proton-Transfer Processes of 2,4-Dinitrobenzylpyridine Derivatives

Author:

Khatib S.,Botoshansky M.,Eichen Y.

Abstract

Photoinduced and thermally activated proton-transfer processes taking place in crystals of 2-(2,4-dinitrobenzyl)pyridine and some of its derivatives are highly sensitive to molecular packing. Small differences in the way the molecules are packed in the crystal are found to dominate molecular properties in controlling the photoactivity of the different phototautomers, leading, for example, to photoactive or photoinert systems. Three compounds, 2-(2,4-dinitrobenzyl)-4-methylpyridine, 1-(2,4-dinitrophenyl)-l-(2-pyridine)ethane and 4′-(2,4-dinitrobenzyl)-4-methyl-2,2′-bipyridine, having different photochemical properties, were prepared and their crystal structures characterized by means of X-ray analysis. In the photoinert crystals the 2,4-dinitrophenyl group is π-stacked with other aromatic rings of neighboring molecules. This arrangement may open some deactivation channels to the excited state which are faster than the proton-transfer process, leading to photoinert crystals. The absence of π-stacking between the chromophore and other aromatic rings leads to photoactive systems. An O atom of the o-nitro group is the only basic atom that is systematically found to interact with the abstracted proton. It seems that this atom is responsible for the photoinduced proton abstraction of the benzylic H atom, while the role of the N atom of the pyridine ring in the proton-abstraction process is mainly inductive.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3