Effect of pressure on the crystal structure of salicylaldoxime-I, and the structure of salicylaldoxime-II at 5.93 GPa

Author:

Wood Peter A.,Forgan Ross S.,Henderson David,Parsons Simon,Pidcock Elna,Tasker Peter A.,Warren John E.

Abstract

The effect of pressure on the crystal structure of salicylaldoxime has been investigated. The ambient-pressure phase (salicylaldoxime-I) consists of pairs of molecules interacting through oximic OH...O hydrogen bonds; taken with phenolic OH...N intramolecular hydrogen bonds, these dimers form a pseudo-macrocycle bounded by an R_4^4 \left({10} \right) motif. The dimers interact principally via π...π stacking contacts. Salicylaldoxime derivatives are used industrially as selective solvent extractants for copper; the selectivity reflects the compatibility of the metal ion with the pseudo-macrocycle cavity size. On increasing the pressure to 5.28 GPa the size of the cavity was found to decrease by an amount comparable to the difference in hole sizes in the structures of the Cu2+ salicylaldoximato complex and its Ni2+ equivalent. On increasing the pressure to 5.93 GPa a new polymorph, salicylaldoxime-II, was obtained in a single-crystal to single-crystal phase transition. PIXEL calculations show that the phase transition is driven in part by relief of intermolecular repulsions in the dimer-forming OH...O-bonded ring motif, and the ten-centre hydrogen-bonding ring motif of the phase I structure is replaced in phase II by a six-centre ring formed by oximic OH...N hydrogen bonds. The transition also relieves repulsions in the π...π stacking contacts. The intramolecular OH...N hydrogen bond of phase I is replaced in phase II by a intermolecular phenolic OH...O hydrogen bond, but the total interaction energy of the pairs of molecules connected by this new contact is very slightly repulsive because the electrostatic hydrogen-bond energy is cancelled by the repulsion term. The intra- to intermolecular hydrogen-bond conversion simply promotes efficient packing rather than contributing to the overall lattice energy.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3