Conformational polymorphism in a Schiff-base macrocyclic organic ligand: an experimental and theoretical study

Author:

Lo Presti LeonardoORCID,Soave Raffaella,Longhi Mariangela,Ortoleva Emanuele

Abstract

Polymorphism in the highly flexible organic Schiff-base macrocycle ligand 3,6,9,17,20,23-hexa-azapentacyclo(23.3.1.111,15.02,6.016,20)triaconta-1(29),9,11,13,15(30),23,25,27-octaene (DIEN, C24H30N6) has been studied by single-crystal X-ray diffraction and both solid-state and gas-phase density functional theory (DFT) calculations. In the literature, only solvated structures of the title compound are known. Two new polymorphs and a new solvated form of DIEN, all obtained from the same solvent with different crystallization conditions, are presented for the first time. They all have P\bar 1 symmetry, with the macrocycle positioned on inversion centres. The two unsolvated polymorphic forms differ in the number of molecules in the asymmetric unitZ′, density and cohesive energy. Theoretical results confirm that the most stable form is (II°), withZ′ = 1.5. Two distinct molecular conformations have been found, named `endo' or `exo' according to the orientation of the imine N atoms, which can be directed towards the interior or the exterior of the macrocycle. Theendoarrangement is ubiquitous in the solid state and is shared by two independent molecules which constitute an invariant supramolecular synthon in all the known crystal forms of DIEN. It is also the most stable arrangement in the gas phase. Theexoform, on the other hand, appears only in phase (II°), which contains both the conformers. Similarities and differences among the occurring packing motifs, as well as solvent effects, are discussed with the aid of Hirshfeld surface fingerprint plots and correlated to the results of the energy analysis. A possible interconversion path in the gas phase between theendoand theexoconformers has been found by DFT calculations; it consists of a two-step mechanism with activation energies of the order of 30–40 kJ mol−1. These findings have been related to the empirical evidence that the most stable phase (II°) is also the last appearing one, in accordance with Ostwald's rule.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3