Application of Equilibrium Conditions as an Alternative Means of Proving Geometric Statements

Author:

Manukyan Vardan1,Nikoghosyan Gagik1

Affiliation:

1. Shirak State University after M. Nalbandyan

Abstract

Key words: mechanics, mathematics, interdisciplinary connections, axiom, theorem, problem, learning The article is devoted to mechanical approaches towards proving geometric statements. In this paper, in order to illustrate the deep connections between physics and geometry, the justifications for geometric statements, using the ideas of statics, is presented. Classifications of physical justifications for geometric statements are given, which is the main scientific and methodological novelty of the paper. The first part of the work represents interdisciplinary connections between physics and geometry along with their features. In the process of their formation and development, the mutual influence of these sciences is shown. The next section presents examples of demonstrative applications of physics in geometry and their classification. The toolkit of physical justifications belonging to the first type, in a sense, already contains a geometric statement that needs to be justified. The second class includes geometric statements supported by the intuitive physical reasoning. The third class includes reasoning that, instead of geometric axiomatics, is based on the application of physical laws and hypotheses. Among the three types mentioned, the evidence, based on the latter, is the most rigorous and independent. The last section of the article discusses the proof of geometric statements based on the application of equilibrium conditions for bodies. The possibilities of applying the discussed approaches in the context of STEM education are presented.

Publisher

Vanadzor State University

Reference8 articles.

1. Նիկողոսյան Գ.Ս., Ֆիզիկայի և երկրաչափության միջառար¬կա¬յա¬կան կապերի որոշ դրսևորումների մասին, ՎՊՀ գիտական տեղեկագիր, «ՎԱՌՄ» ՍՊԸ, 2022, հ 1, էջ. 208-224:

2. Балк М.Б., Болтянский В.Г. Геометрия масс, Москва: «Наука», 1987. - 160 с.

3. Коган Б.Ю. Приложение механики в геометрии (серия «Популяр¬ные лекции по математике») Москва, «Наука», 1965, 57с.

4. Успенский В.А. Некоторые приложения механики в математике (серия «Популярные лекции по математике») Москва, «Наука», 1958, 50 с.

5. Цатурян А.М., Парсаданян С.М., Манукян В.Ф., Никогосян Г.С. О некоторых математических соотношениях, вытекающих из физи-чес¬ких соображений, физика в школе и вузе. Международный сборник научных статей, выпуск 14, Санкт-Петербург 2012, 234-237 с.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3