Abstract
The purpose of this work is to determine the possibility of detecting changes in the relationships between such physiological rhythms as the activity of neurons in the reticular formation of the medulla oblongata, fluctuations in the blood pressure and respiration in anesthetized rats before and during the development of a pathological state associated with painful colorectal distension. This stretch mimics the pain localized in the lower abdomen in patients with irritable bowel syndrome and it is accompanied by responses of the brain neurons, fluctuations in the blood pressure and respiration. The analysis of changes in the relationships of these rhythms consisted in identifying phase synchronization between the time series of the variability of neuronal activity intervals and the variability of blood pressure intervals at the respiratory rate before and during pain exposure. Methods. To solve this problem, the synchrosqueezed wavelet transform method was applied, which makes it possible to effectively calculate the instantaneous frequencies and phases of non-stationary signals. As indicators of synchronization, we used the values of the index and the duration of phase synchronization as a time interval during which the value of the synchronization index is close to 1. Results. It has been established that the pain effect provides an adjustment of the frequency of the neuronal activity variability and the occurrence of synchronization between this activity and the blood pressure variability at the respiratory rate or causes an adjustment of the frequency of the blood pressure variability and the occurrence of synchronization between the blood pressure variability and the respiratory rhythm. It was found that the pain effect increases the duration of phase synchronization between the variability of the blood pressure and the respiratory rhythm or reduces the duration of phase synchronization between the variability of neuronal activity and the respiratory rhythm. Conclusion. The effect of painful colorectal distension on changes in the parameters of phase synchronization between physiological rhythms in anesthetized rats was studied in detail.