Identification of Hand Tremor Levels in Shooting Activities Under Different Shooting Positions Using a Low Cost and Portable System

Author:

Saputra JekiORCID,Santoso Didik RahadiORCID,Dharmawan Hari AriefORCID,Hasanah Rini NurORCID

Abstract

The accuracy level is important in shooting activities and depends on many factors, such as hand tremors as body vibration and shooting position. Achieving high accuracy in different shooters is challenging, especially in the case of different shooting positions. However, there is a lack of information about the influence of shooting positions and experiences on a shooter’s body vibration and accuracy levels. Thus, this study aims to develop a portable and low-cost hand tremor measurement device (as a function of body vibration) to identify the influence of hand movement on shooting accuracy. For this purpose, low-cost accelerometer sensors and a microcontroller were used as the measurement kit. Three different shooting positions (squatting, standing, and prone) were analyzed. The shooters were classified into novice and expert groups. Each group had five participants with standard fire guns and accelerometer kits. These participants were asked to shoot the target to get their best accuracy. Besides, the hand tremor level data from the self-developed kit were recorded to investigate the hand tremors. The results show that the novice participants have more hand tremors in all shooting positions. There are significant differences between the squatting, standing, and prone positions in hand tremors for novice and expert participants. In the expert group, the prone and squatting positions have the least vibration level, indicated by the least acceleration (0.01 - 0.04 m/s2 for the expert group and 0.02 - 0.11 m/s2 for the novice group). The best accuracy for all positions is also obtained from expert shooters. It can be concluded that different shooting positions are related to the body vibrations. The expert shooters have a lower body vibration than the novice participants. The hand tremor levels may influence the accuracy level since different shooting positions and experiences have different vibration and accuracy levels

Publisher

Defence Scientific Information and Documentation Centre

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3