E-WASTE MANAGEMENT THROUGH DEEP LEARNING: A SEQUENTIAL NEURAL NETWORK APPROACH

Author:

Oise Godfrey,Konyeha Susan

Abstract

The goal of this research is to improve the management of electronic trash (e-waste) by using a Sequential Neural Network (SNN) with TensorFlow and Keras as part of an advanced deep learning technique. In order to address the growing problem of e-waste, the research collects a large amount of data from images of e-waste and then carefully preprocesses and augments those images. With precision, recall, and F1 scores of 87%, 86%, and 86%, respectively, the SNN architecture—which incorporates dropout, pooling, and convolutional layers—achieved an amazing 100% classification accuracy. These outstanding outcomes show how well the model can classify e-waste components, suggesting that it has the potential to be used in real-world scenarios. The results indicate that the SNN-based approach greatly improves the accuracy and efficiency of e-waste sorting, promoting environmental sustainability and resource conservation. By automating the sorting process, the suggested system decreases the need for manual labor, minimizes human error, and speeds up processing. The study emphasizes the model's suitability for integration into current e-waste management workflows, providing a scalable and dependable way to expedite the recycling process. Additionally, the model's real-time applicability highlights its potential to revolutionize current e-waste management practices, making a positive ecological impact. . Future research endeavors will center on broadening the dataset to include a wider range of e-waste image categories, investigating more advanced deep learning architectures, and incorporating the system with Internet of Things (IoT) devices to improve real-time monitoring and management.

Publisher

Federal University Dutsin-Ma

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3