Using a Novel Dose QA Tool to Quantify the Impact of Systematic Errors Otherwise Undetected by Conventional QA Methods: Clinical Head and Neck Case Studies

Author:

Chan Maria F.1,Li Jingdong1,Schupak Karen1,Burman Chandra1

Affiliation:

1. Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, 136 Mountain View Blvd., Basking Ridge, NJ 07920 USA

Abstract

Recent studies have demonstrated that per-beam planar intensity-modulated radiation therapy (IMRT) quality assurance (QA) passing rates may not predict clinically relevant patient dose errors. This work is to evaluate the effect of dose variations introduced in dynamic multileaf collimator (DMLC) modeling and delivery processes on clinically relevant metrics for IMRT. Ten head and neck (HN) IMRT plans were randomly selected for this study. The conventional per-beam IMRT QA was performed for each plan by 2 different methods: (1) with gantry angle of 0 (gantry pointing downward) for all IMRT fields and (2) with gantry at specific angles as designed in the IMRT plan. For each patient, a batch analysis was done for each scenario and then imported to the 3DVH (Sun Nuclear Corp.) for processing. A “corrected DVH” was generated and compared to the DVH from the treatment plan. Their differences represented errors introduced from the combination of the treatment planning system (TPS) dose calculation algorithm and beam-delivery. The dose metrics from the two scenarios were compared with the corresponding calculated doses, and then their differences were analyzed. Although all per-beam planar IMRT QA had high Gamma passing rates 99.3 ± 1.3% (92.3–100%) for “2%/3 mm” criteria, there were significant errors in some of the calculated clinical dose metrics. Such as, for all the plans studied, there were as much as 3.2%, 5.7%, 5.6%, 2.3%, 4.1%, and −3.8% errors found in max cord dose, max brainstem dose, mean parotid dose, larynx dose, oral cavity dose, and PTV(D95) dose, respectively. The differences in errors for clinical metrics obtained between the two scenarios (zero gantry angle vs. true gantry angles) can also be significant: max cord dose (2.9% vs. 0.2%), max brainstem dose (3.8% vs. 0.4%), mean parotid dose (2.3% vs. 4.5%), mean larynx dose (3.9% vs. 2.0%), mean oral cavity dose (1.6% vs. 3.9%), and PTV(D95) dose (−0.4% vs. −2.6%). However, in the two scenarios, a strong and clear correlation between the dose differences for each of the organ structures was observed. This study confirms that conventional IMRT QA performance metrics are not predictive of dose errors in PTV and organs-at-risk. The clinically-relevant-dose QA has allowed us to predict the patient dose-volume relationships.

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3