Abstract
The objective of this manuscript is to present a novel approach to modeling influenza A disease dynamics by incorporating the Caputo-Fabrizio (CF) fractional derivative operator into the model. Particularly distinct contact rates between exposed and infected individuals are taken into account in the model under study, and the fractional derivative concept is explored with respect to this component. We demonstrate the existence and uniqueness of the solution and obtain the series solution for all compartments using the Laplace transform method. The reproduction number of the Influenza A model, which was created to show the effectiveness of different contact rates, was obtained and examined in detail in this sense. To validate our approach, we applied the predictor-corrector method in the sense of the Caputo-Fabrizio fractional derivative and demonstrate the effectiveness of the fractional derivative in accurately predicting disease dynamics. Our findings suggest that the use of the Caputo-Fabrizio fractional derivative can provide valuable insights into the mechanisms underlying influenza A disease and enhance the accuracy of disease models.
Publisher
Mathematical Modelling and Numerical Simulation with Applications
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献