Note for the Prime Gaps

Author:

Vega Frank1ORCID

Affiliation:

1. GROUPS PLUS TOURS INC., 9611 Fontainebleau Blvd, Miami, FL, 33172, USA

Abstract

A prime gap is the difference between two successive prime numbers. The nth prime gap, denoted $g_{n}$ is the difference between the (n + 1)st and the nth prime numbers, i.e. $g_{n}=p_{n+1}-p_{n}$. There isn't a verified solution to Andrica's conjecture yet. The conjecture itself deals with the difference between the square roots of consecutive prime numbers. While mathematicians have showed it true for a vast number of primes, a general solution remains elusive. We consider the inequality $\frac{\theta(p_{n+1})}{\theta(p_{n})} \geq \sqrt {\frac{p_{n+1}}{p_{n}}}$ for two successive prime numbers $p_{n}$ and $p_{n+1}$, where $\theta(x)$ is the Chebyshev function. In this note, under the assumption that the inequality $\frac{\theta(p_{n+1})}{\theta(p_{n})} \geq \sqrt {\frac{p_{n+1}}{p_{n}}}$ holds for all $n \geq 1.3002 \cdot 10^{16}$, we prove that the Andrica's conjecture is true. Since $\frac{\theta(p_{n+1})}{\theta(p_{n})} \geq \sqrt {\frac{p_{n+1}}{p_{n}}}$ holds indeed for large enough prime number $p_{n}$, then we show that the statement of the Andrica's conjecture can always be true for all primes greater than some threshold.

Publisher

ScienceOpen

Reference4 articles.

1. 95.42 Irrational square roots of natural numbers — a geometrical approach;Jackson;The Mathematical Gazette,2011

2. Approximate formulas for some functions of prime numbers;Rosser;Illinois Journal of Mathematics,1962

3. On the first sign change of $\theta (x) -x$;Platt;Mathematics of Computation,2015

4. On the interval containing at least one prime number;Nagura;Proceedings of the Japan Academy, Series A, Mathematical Sciences,1952

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3