Affiliation:
1. Department of Financial Economy and Operations Management, Faculty of Economics and Business Sciences, University of Seville, Spain
2. Department of Applied Economics III, Faculty of Economics and Business Sciences, University of Seville, Spain
Abstract
Following the calls from literature on bankruptcy, a parsimonious hybrid bankruptcy model is developed in this paper by combining parametric and non-parametric approaches.To this end, the variables with the highest predictive power to detect bankruptcy are selected using logistic regression (LR). Subsequently, alternative non-parametric methods (Multilayer Perceptron, Rough Set, and Classification-Regression Trees) are applied, in turn, to firms classified as either “bankrupt” or “not bankrupt”. Our findings show that hybrid models, particularly those combining LR and Multilayer Perceptron, offer better accuracy performance and interpretability and converge faster than each method implemented in isolation. Moreover, the authors demonstrate that the introduction of non-financial and macroeconomic variables complement financial ratios for bankruptcy prediction
Publisher
LLC CPC Business Perspectives
Subject
Strategy and Management,Economics and Econometrics,Finance,Business and International Management
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献