PARAMETRIC ESTIMATION METHODS FOR BIVARIATE COPULA IN RAINFALL APPLICATION

Author:

Mohd Lokoman RahmahORCID,Yusof FadhilahORCID

Abstract

This study focuses on the parametric methods: maximum likelihood (ML), inference function of margins (IFM), and adaptive maximization by parts (AMBP) in estimating copula dependence parameter. Their performance is compared through simulation and empirical studies. For empirical study, 44 years of daily rainfall data of Station Kuala Krai and Station Ulu Sekor are used. The correlation of the two stations is statistically significant at 0.4137. The results from the simulation study show that when the sample size is small (n <1000) for correlation level less than 0.80, IFM has the best performance. While, when the sample size is large (n ≥ 1000) for any correlation level, AMBP has the best performance. The results from the empirical study also show that AMBP has the best performance when the sample size is large. Thus, in order to estimate a precise Copula dependence parameter, it can be concluded that for parametric approaches, IFM is preferred for small sample size and has correlation level less than 0.80 and AMBP is preferred for larger sample size and for any correlation level. The results obtained in this study highlight the importance of estimating the dependence structure of the hydrological data. By using the fitted copula, Malaysian Meteorological Department will able to generate hydrological events for a system performance analysis such as flood and drought control system.

Publisher

Penerbit UTM Press

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prediction of riverflow using bivariate extreme value distribution with composite likelihood approach;The 5TH ISM INTERNATIONAL STATISTICAL CONFERENCE 2021 (ISM-V): Statistics in the Spotlight: Navigating the New Norm;2023

2. Flood risk analysis based on nested copula structure in Armand Basin, Iran;Acta Geophysica;2022-04-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3