ON THE SZEGED INDEX AND ITS NON-COMMUTING GRAPH

Author:

Alimon Nur IdayuORCID,Sarmin Nor HanizaORCID,Erfanian AhmadORCID

Abstract

In chemistry, the molecular structure can be represented as a graph. Based on the information from the graph, its characterization can be determined by computing the topological index. Topological index is a numerical value that can be computed by using some algorithms and properties of the graph. Meanwhile, the non-commuting graph is a graph, in which two distinct vertices are adjacent if and only if they do not commute, where it is made up of the non-central elements in a group as a vertex set. In this paper, the Szeged index of the non-commuting graph of some finite groups are computed. This paper focuses on three finite groups which are the quasidihedral groups, the dihedral groups, and the generalized quaternion groups. The construction of the graph is done by using Maple software. In finding the Szeged index, some of the previous results and properties of the graph for the quasidihedral groups, the dihedral groups, and the generalized quaternion groups are used. The generalisation of the Szeged index of the non-commuting graph is then established for the aforementioned groups. The results are then applied to find the Szeged index of the non-commuting graph of ammonia molecule.

Publisher

Penerbit UTM Press

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3