Cancer Detection Using Aritifical Neural Network and Support Vector Machine: A Comparative Study

Author:

Sy Ahmad Ubaidillah Sharifah Hafizah,Sallehuddin Roselina,Ali Nor Azizah

Abstract

Accurate diagnosis of cancer plays an importance role in order to save human life. The results of the diagnosis indicate by the medical experts are mostly differentiated based on the experience of different medical experts. This problem could risk the life of the cancer patients. From the literature, it has been found that Artificial Intelligence (AI) machine learning classifiers such as an Artificial Neural Network (ANN) and Support Vector Machine (SVM) can help doctors in diagnosing cancer more precisely. Both of them have been proven to produce good performance of cancer classification accuracy. The aim of this study is to compare the performance of the ANN and SVM classifiers on four different cancer datasets. For breast cancer and liver cancer dataset, the features of the data are based on the condition of the organs  which is also called as standard data while for prostate cancer and ovarian cancer; both of these datasets are in the form of gene expression data. The datasets including benign and malignant tumours is specified to classify with proposed methods. The performance of both classifiers is evaluated using four different measuring tools which are accuracy, sensitivity, specificity and Area under Curve (AUC). This research has shown that the SVM classifier can obtain good performance in classifying cancer data compare to ANN classifier.

Publisher

Penerbit UTM Press

Subject

General Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3