Abstract
AbstractProtists’ selective predation of bacterial cells is an important regulator of soil microbiomes, which might influence the success of bacterial releases in soils. For instance, the survival and activity of introduced bacteria can be affected by selective grazing on resident communities or the inoculant, but this remains poorly understood. Here, we investigated the impact of the introduction in the soil of two protozoa species, Rosculus terrestris ECOP02 and/or Cerocomonas lenta ECOP01, on the survival of the inoculants Bacillus mycoides M2E15 (BM) or B. pumilus ECOB02 (BP). We also evaluated the impact of bacterial inoculation with or without protozoan addition on the abundance and diversity of native soil bacterial and protist communities. While the addition of both protozoa decreased the survival of BM, their presence contrarily increased the BP abundance. Protists’ selective predation governs the establishment of these bacterial inoculants via modifying the soil microbiome structure and the total bacterial abundance. In the BP experiment, the presence of the introduced protozoa altered the soil community structures and decreased soil bacterial abundance at the end of the experiment, favouring the invader survival. Meanwhile, the introduced protozoa did not modify the soil community structures in the BM experiment and reduced the BM + Protozoa inoculants’ effect on total soil bacterial abundance. Our study reinforces the view that, provided added protozoa do not feed preferentially on bacterial inoculants, their predatory behaviour can be used to steer the soil microbiome to improve the success of bacterial inoculations by reducing resource competition with the resident soil microbial communities.
Publisher
Springer Science and Business Media LLC
Reference59 articles.
1. Ray DK, Mueller ND, West PC, Foley JA. Yield trends are insufficient to double global crop production by 2050. PLoS ONE. 2013;8:1–8.
2. United Nations Department of Economic and Social Affairs. World population prospects: the 2017 revision. 2017. https://www.un.org/development/desa/publications/world-population-prospects-the-2017-revision.html.
3. Pe’er G, Dicks LV, Visconti P, Arlettaz R, Báldi A, Benton TG, et al. EU agricultural reform fails on biodiversity. Science. 2014;344:1090–2.
4. Jack CN, Petipas RH, Cheeke TE, Rowland JL, Friesen ML. Microbial inoculants: silver bullet or microbial Jurassic Park? Trends Microbiol. 2020;29:299–308.
5. Saad M, Eida A, Hirt H. Tailoring plant-associated microbial inoculants in agriculture: a roadmap for successful application. J Exp Bot. 2020;71:3878–901.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献