Competitive and substrate limited environments drive metabolic heterogeneity for comammox Nitrospira

Author:

Martinez-Rabert Eloi12ORCID,Smith Cindy J1,Sloan William T1,Gonzalez-Cabaleiro Rebeca2ORCID

Affiliation:

1. James Watt School of Engineering, Infrastructure and Environment Research Division, University of Glasgow, Advanced Research Centre , Glasgow, UK

2. Department of Biotechnology, Delft University of Technology , Delft, The Netherlands

Abstract

Abstract Nitrospira has been revealed as a high versatile genus. Although previously considered only responsible for the conversion of nitrite to nitrate, now we know that Nitrospira can perform complete ammonia oxidation to nitrate too (comammox). Comammox activity was firstly reported as dominant in extremely limited oxygen environments, where anaerobic ammonia oxidation was also occurring (anammox). To explain the comammox selection, we developed an Individual-based Model able to describe Nitrospira and anammox growth in suspended flocs assembled in a dynamic nitrogen and oxygen-limiting environment. All known and hypothesized nitrogen transformations of Nitrospira were considered: ammonia and nitrite oxidation, comammox, nitrate-reducing ammonia oxidation, and anaerobic nitrite-reducing ammonia oxidation. Through bioenergetics analysis, the growth yield associated to each activity was estimated. The other kinetic parameters necessary to describe growth were calibrated according to the reported literature values. Our modeling results suggest that even extremely low oxygen concentrations (~1.0 µM) allow for a proportional growth of anammox versus Nitrospira similar to the one experimentally observed. The strong oxygen limitation was followed by a limitation of ammonia and nitrite, because anammox, without strong competitors, were able to grow faster than Nitrospira depleting the environment in nitrogen. These substrate limitations created an extremely competitive environment that proved to be decisive in the community assembly of Nitrospira and anammox. Additionally, a diversity of metabolic activities for Nitrospira was observed in all tested conditions, which in turn, explained the transient nitrite accumulation observed in aerobic environments with higher ammonia availability.

Publisher

Oxford University Press (OUP)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3