Abstract
AbstractSoil compaction affects many soil functions, but we have little information on the resistance and resilience of soil microorganisms to this disturbance. Here, we present data on the response of soil microbial diversity to a single compaction event and its temporal evolution under different agricultural management systems during four growing seasons. Crop yield was reduced (up to −90%) in the first two seasons after compaction, but mostly recovered in subsequent seasons. Soil compaction increased soil bulk density (+15%), and decreased air permeability (−94%) and gas diffusion (−59%), and those properties did not fully recover within four growing seasons. Soil compaction induced cropping system-dependent shifts in microbial community structures with little resilience over the four growing seasons. Microbial taxa sensitive to soil compaction were detected in all major phyla. Overall, anaerobic prokaryotes and saprotrophic fungi increased in compacted soils, whereas aerobic prokaryotes and plant-associated fungi were mostly negatively affected. Most measured properties showed large spatial variability across the replicated blocks, demonstrating the dependence of compaction effects on initial conditions. This study demonstrates that soil compaction is a disturbance that can have long-lasting effects on soil properties and soil microorganisms, but those effects are not necessarily aligned with changes in crop yield.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Publisher
Springer Science and Business Media LLC
Reference98 articles.
1. Hamza MA, Anderson WK. Soil compaction in cropping systems: a review of the nature, causes and possible solutions. Soil and Tillage Res. 2005;82:121–45.
2. Etana A, Larsbo M, Keller T, Arvidsson J, Schjønning P, Forkman J, et al. Persistent subsoil compaction and its effects on preferential flow patterns in a loamy till soil. Geoderma. 2013;192:430–6.
3. de Andrade Bonetti J, Anghinoni I, de Moraes MT, Fink JR. Resilience of soils with different texture, mineralogy and organic matter under long-term conservation systems. Soil Tillage Res. 2017;174:104–12.
4. FAO. Status of the world’s soil resources - main report. Food and agriculture organization of the United Nations and intergovernmental technical panel on soils. 607 (2015). http://www.fao.org/3/i5199e/I5199E.pdf
5. Garrigues E, Corson MS, Angers DA, Van Der Werf HMG, Walter C. Development of a soil compaction indicator in life cycle assessment. Int J Life Cycle Assess. 2013;18:1316–24.
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献