Limited resilience of the soil microbiome to mechanical compaction within four growing seasons of agricultural management

Author:

Longepierre ManonORCID,Widmer FrancoORCID,Keller Thomas,Weisskopf Peter,Colombi TinoORCID,Six JohanORCID,Hartmann MartinORCID

Abstract

AbstractSoil compaction affects many soil functions, but we have little information on the resistance and resilience of soil microorganisms to this disturbance. Here, we present data on the response of soil microbial diversity to a single compaction event and its temporal evolution under different agricultural management systems during four growing seasons. Crop yield was reduced (up to −90%) in the first two seasons after compaction, but mostly recovered in subsequent seasons. Soil compaction increased soil bulk density (+15%), and decreased air permeability (−94%) and gas diffusion (−59%), and those properties did not fully recover within four growing seasons. Soil compaction induced cropping system-dependent shifts in microbial community structures with little resilience over the four growing seasons. Microbial taxa sensitive to soil compaction were detected in all major phyla. Overall, anaerobic prokaryotes and saprotrophic fungi increased in compacted soils, whereas aerobic prokaryotes and plant-associated fungi were mostly negatively affected. Most measured properties showed large spatial variability across the replicated blocks, demonstrating the dependence of compaction effects on initial conditions. This study demonstrates that soil compaction is a disturbance that can have long-lasting effects on soil properties and soil microorganisms, but those effects are not necessarily aligned with changes in crop yield.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3