Viral diversity is linked to bacterial community composition in alpine stream biofilms

Author:

Bekliz Meriem,Pramateftaki Paraskevi,Battin Tom JanORCID,Peter HannesORCID

Abstract

AbstractBiofilms play pivotal roles in fluvial ecosystems, yet virtually nothing is known about viruses in these communities. Leveraging an optimized sample-to-sequence pipeline, we studied the spatiotemporal turnover of dsDNA viruses associated with stream biofilms and found an astounding diversity to be structured by seasons and along the longitudinal gradient in the stream. While some vOTUs were region- or season-specific, we also identified a large group of permanent biofilm phages, taxonomically dominated by Myoviridae. Comparison of the observed viral distribution with predictions based on neutral community assembly indicated that chance and dispersal may be important for structuring stream biofilm viral communities. Deviation from neutral model predictions suggests that certain phages distribute efficiently across distant locations within the stream network. This dispersal capacity appears to be linked to EPS depolymerases that enable phages to efficiently overcome the biofilm barrier. Other phages, particularly vOTUs classified as Siphoviridae, appear locally overrepresented and to rely on a lysogenic life cycle, potentially to exploit the spatial distribution of bacterial populations in stream biofilms. Overall, biofilm viral and bacterial community turnover were significantly coupled. Yet, viral communities were linked to the presence of the most abundant bacterial community members. With this work, we provide a foundational ecological perspective on factors that structure viral diversity in stream biofilms and identify potentially important viral traits related to the biofilm mode of life.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3