Abstract
AbstractThe dynamical response of a quantum spin liquid upon injecting a hole is a pertinent open question. In experiments, the hole spectral function, measured momentum-resolved in angle-resolved photoemission spectroscopy (ARPES) or locally in scanning tunneling microscopy (STM), can be used to identify spin liquid materials. In this study, we employ tensor network methods to simulate the time evolution of a single hole doped into the Kitaev spin-liquid ground state. Focusing on the gapped spin liquid phase, we reveal two fundamentally different scenarios. For ferromagnetic spin couplings, the spin liquid is highly susceptible to hole doping: a Nagaoka ferromagnet forms dynamically around the doped hole, even at weak coupling. By contrast, in the case of antiferromagnetic spin couplings, the hole spectrum demonstrates an intricate interplay between charge, spin, and flux degrees of freedom, best described by a parton mean-field ansatz of fractionalized holons and spinons. Moreover, we find a good agreement of our numerical results to the analytically solvable case of slow holes. Our results demonstrate that dynamical hole spectral functions provide rich information on the structure of fractionalized quantum spin liquids.
Funder
Deutsche Forschungsgemeinschaft
- Munich Quantum Valley, which is supported by the Bavarian state government with funds from the Hightech Agenda Bayern Plus
-Munich Quantum Valley, which is supported by the Bavarian state government with funds from the Hightech Agenda Bayern Plus - Imperial-TUM flagship partnership
- Munich Quantum Valley, which is supported by the Bavarian state government with funds from the Hightech Agenda Bayern Plus - Imperial-TUM flagship partnership
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献