Affiliation:
1. Laboratory for Experimental Brain Research, University of Lund, Lund, Sweden
Abstract
Hypoglycemia of sufficient severity to cause cessation of EEG activity (coma) is accompanied by energy failure and by loss of ion homeostasis, the latter encompassing a marked rise in extracellular fluid (ECF) K+ concentration and a fall in ECF Ca2+ concentration. Presumably, ECF Na+ concentration decreases as well. In the present study, the extent that the altered ECF-plasma gradients give rise to net ion fluxes between plasma and tissue is explored. Accordingly, whole tissue contents of Ca2+, Mg2+, K+, and Na+ were measured. The experiments were carried out in anaesthetized and artificially ventilated rats given insulin i.p.; cerebral cortical tissue was sampled at the stage of slow-wave EEG activity, after 10, 30, and 60 min of coma (defined as isoelectric EEG), as well as after 1.5, 6, and 24 h of recovery. In the precomatose animals (with a slow-wave EEG pattern), no changes in electrolyte contents were observed. During coma, tissue Na+ content increased progressively and the K+ content fell (each by 20 μmol g−1 during 60 min). During recovery, these alterations were reversed within the first 6 h. The Mg2+ content remained unchanged. In spite of the appreciable plasma to ECF Ca2+ gradient, no significant calcium accumulation was observed. It is concluded that hypoglycemia leads to irreversible neuronal necrosis in the absence of gross accumulation of calcium in the tissue.
Subject
Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献