Mechanisms of Action of Endothelin on Isolated Feline Cerebral Arteries: In vitro Pharmacology and Electrophysiology

Author:

Jansen I.,Fallgren B.1,Edvinsson L.2

Affiliation:

1. Departments of Zoophysiology, University of Lund, Lund, Sweden

2. Departments of Internal Medicine, University of Lund, Lund, Sweden

Abstract

Vascular endothelium has been found to produce a strong and potent vasoconstrictor peptide, endothelin. In this study, we have examined basic mechanisms underlying the contractile response of cerebral vessels to endothelin using in vitro pharmacology and electrophysiology. It was found that endothelin produced strong concentration-dependent contractions of circular segments of the feline middle cerebral artery. The response was slow in onset and long lasting. The vessels showed a remarkably strong tachyphylactic reaction upon repeated exposure to endothelin. The contractile effect of endothelin was not modified by the α-adrenoceptor antagonist phen-tolamine (10−6 M) or the 5-hydroxytryptamine antagonist ketanserin (10−6 M). Mechanical removal of the endothelium decreased potassium contractions while the maximum response to endothelin was only slightly reduced. There was no change in sensitivity of the cerebral artery to endothelin. The addition of a calcium antagonist (10−6 M diltiazem or 3 × 10−8 M nimodipine) or removal of extracellular calcium from the buffer solution did not change the sensitivity of the artery to endothelin but the maximum response to endothelin was reduced by between 40 and 60% by these procedures. The resting membrane potential of the cat middle cerebral artery was –62.8 ± 3.5 mV. There was no significant depolarization in conjunction with cumulative administration of endothelin in concentrations below 1 × 10−9 M. However, bursts of excitatory junction potentials were occasionally seen in response to high concentrations of endothelin (5 × 10−9 M). The findings suggest that the contractile response to endothelin of cat cerebral arteries involved influx of extracellular calcium through voltage-sensitive calcium channels and is in part mediated via a voltage-insensitive mechanism. Further work is necessary to define the intracellular actions of endothelin.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3