Affiliation:
1. Department of Neurology, Institute of Neuropathology, University of Munich, Munich, F.R.G.
2. Max von Pettenkofer Institute of Hygiene and Microbiology, University of Munich, Munich, F.R.G.
Abstract
We investigated the temporal profile of the changes in regional CBF (rCBF) and intracranial pressure (ICP) during the early phase of pneumococcal meningitis in the rat. rCBF, as measured by laser-Doppler flowmetry, and ICP were continuously monitored during 6 h post infection (p.i.). Brain edema formation was assessed by brain water content determinations. Meningitis was induced by intracisternal injection of 75 μl of 107 colony-forming units/ml pneumococci (n = 7). In control animals (n = 6), saline was injected. There was no change in the rCBF or ICP of controls throughout the experiment. However, there was a dramatic increase in rCBF and ICP associated with brain edema formation in untreated meningitis animals. rCBF increased to 135.3 ± 33.8% (mean ± SD) in the untreated animals at 1 h p.i, and reached 211.1 ± 40.5% at 6 h p.i. (p < 0.05 compared with controls). ICP increased from 2.9 ± 1.4 to 10.4 ± 4.7 mm Hg at 6 h p.i. (p < 0.05 compared with controls). Brain water content was significantly elevated (79.69 ± 0.24 compared with 78.94 ± 0.16% in the control group, p < 0.05). We investigated the effect of dexamethasone (3 mg/kg i.p.), which was given prior to the induction of meningitis (n = 3) or at 2 h after pneumococcal injection (n = 5), indomethacin (10 mg/kg i.V., n = 5), and superoxide dismutase (SOD; 132,000 U/kg i.v. per 6 h, n = 6). The increases in rCBF and ICP were prevented by the pretreatment with dexamethasone and the administration of SOD, delayed and attenuated by pretreatment with indomethacin, and reversed by administration of dexamethasone 2 h p.i. These findings suggest that oxygen-derived free radicals are involved as mediators in the increases of rCBF and ICP and brain edema formation during the early phase of experimental bacterial meningitis. Arachidonic acid metabolites of the cyclooxygenase pathway are partially involved in the observed changes and are one possible source for the generation of oxygen-derived free radicals in bacterial meningitis.
Subject
Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology
Cited by
132 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献