Balancing-oriented hydropower operation makes the clean energy transition more affordable and simultaneously boosts water security

Author:

Liu Zhanwei,He XiaogangORCID

Abstract

AbstractReservoir hydropower offers a compelling combination of stability and flexibility services for modern water and power grids. However, its operating flexibility is poorly characterized in energy system planning, missing opportunities to cost-effectively uptake variable renewable energy (VRE) for a clean energy transition. In this study, we have developed a fully coupled reservoir operation and energy expansion model to quantify the economic and environmental benefits attained from adaptive hydropower operation in a high VRE future. Our case study of the China Southern Power Grid reveals that, in a 2050 net-zero grid, simply adapting hydropower operations to balance VRE can reduce 2018–2050 total system costs by 7% (that is, US$28.2 billion) and simultaneously save 123.8 km3 of water each year (that is, more than three times the reservoir capacity of the Three Gorges Dam). These vast, yet overlooked, cost- and water-saving potentials highlight the importance of incorporating balancing-oriented hydropower operation into future pathways to jointly decarbonize and secure power and water grids.

Funder

Ministry of Education - Singapore

National University of Singapore

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3