MyD88 determines the protective effects of fish oil and perilla oil against metabolic disorders and inflammation in adipose tissue from mice fed a high-fat diet

Author:

Wang FengORCID,Hu Mingyuan,Zhu Hangju,Yang Chao,Xia Hui,Yang XianORCID,Yang Ligang,Sun GuijuORCID

Abstract

Abstract Background The beneficial effects of ω−3 polyunsaturated fatty acids (PUFA) vary between different sources. However, there is a paucity of comparative studies regarding the effects and mechanisms of marine and plant ω−3 PUFA on obesity. Objective The aim of this study was to evaluate the effects of fish oil (FO) and perilla oil (PO) on glucolipid metabolism, inflammation, and adipokine in mice fed a high-fat (HF) diet in association with the contribution of toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MyD88) pathway. Methods C57BL/6J mice and MyD88−/− mice were randomly divided into 4 groups: normal chow diet, HF diet, HF diet accompanied by daily gavage with either FO or PO. After 4 weeks, blood biochemistries, adipocyte histology, mRNA, and protein expression of MyD88-dependent and -independent pathways of TLR4 signaling in epididymal adipose tissue were measured. Results In C57BL/6J mice, there were no statistical differences between FO and PO in decreasing body weight, glucose, insulin, triglyceride, total cholesterol, interleukin-6, and increasing adipocyte counts. FO and PO decreased mRNA and protein expression of TLR4, MyD88, tumor necrosis factor receptor-associated factor 6, inhibitor of nuclear factor kappa B kinase beta and nuclear factor-kappa B p65. In MyD88−/− mice, the beneficial effects of FO and PO on HF diet-induced metabolism abnormalities and inflammation were abolished. FO and PO had no impacts on mRNA and protein expression of receptor-interacting protein-1, interferon regulate factor 3, and nuclear factor-kappa B p65. Conclusion FO and PO exhibit similar protective effects on metabolic disorders and inflammation through inhibiting TLR4 signaling in a manner dependent on MyD88. These findings highlight plant ω−3 PUFA as an attractive alternative source of marine ω−3 PUFA and reveal a mechanistic insight for preventive benefits of ω−3 PUFA in obesity and related metabolic diseases.

Publisher

Springer Science and Business Media LLC

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3