Abstract
Abstract
Background
Rapid simultaneous increases in ultra-processed food sales and obesity prevalence have been observed worldwide, including in Australia. Consumption of ultra-processed foods by the Australian population was previously shown to be systematically associated with increased risk of intakes of nutrients outside levels recommended for the prevention of obesity. This study aims to explore the association between ultra-processed food consumption and obesity among the Australian adult population and stratifying by age group, sex and physical activity level.
Methods
A cross-sectional analysis of anthropometric and dietary data from 7411 Australians aged ≥20 years from the National Nutrition and Physical Activity Survey 2011–2012 was performed. Food consumption was evaluated through 24-h recall. The NOVA system was used to identify ultra-processed foods, i.e. industrial formulations manufactured from substances derived from foods and typically added of flavours, colours and other cosmetic additives, such as soft drinks, confectionery, sweet or savoury packaged snacks, microwaveable frozen meals and fast food dishes. Measured weight, height and waist circumference (WC) data were used to calculate the body mass index (BMI) and diagnosis of obesity and abdominal obesity. Regression models were used to evaluate the association of dietary share of ultra-processed foods (quintiles) and obesity indicators, adjusting for socio-demographic variables, physical activity and smoking.
Results
Significant (P-trend ≤ 0.001) direct dose–response associations between the dietary share of ultra-processed foods and indicators of obesity were found after adjustment. In the multivariable regression analysis, those in the highest quintile of ultra-processed food consumption had significantly higher BMI (0.97 kg/m2; 95% CI 0.42, 1.51) and WC (1.92 cm; 95% CI 0.57, 3.27) and higher odds of having obesity (OR = 1.61; 95% CI 1.27, 2.04) and abdominal obesity (OR = 1.38; 95% CI 1.10, 1.72) compared with those in the lowest quintile of consumption. Subgroup analyses showed that the trend towards positive associations for all obesity indicators remained in all age groups, sex and physical activity level.
Conclusion
The findings add to the growing evidence that ultra-processed food consumption is associated with obesity and support the potential role of ultra-processed foods in contributing to obesity in Australia.
Funder
Fundação de Amparo à Pesquisa do Estado de São Paulo
Publisher
Springer Science and Business Media LLC
Subject
Endocrinology, Diabetes and Metabolism,Internal Medicine
Reference60 articles.
1. AIHW. Australian Institute of Health and Welfare. Australia’s health 2016. Australia’s health series no. 15 2016. https://www.aihw.gov.au/reports/australias-health/australias-health-2016/contents/summary (2016).
2. Keating, C. et al. Prevalence of class-I, class-II and class-III obesity in Australian adults between 1995 and 2011-12. Obes. Res. Clin. Pract. 9, 553–562 (2015).
3. OECD. Obesity update 2017. www.oecd.org/health/obesity-update.htm (2017).
4. Swinburn, B. A. et al. The global syndemic of obesity, undernutrition, and climate change: the Lancet Commission report. Lancet 393, 791–846 (2019).
5. GBD 2015 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1659–1724 (2016).